Form factors of the monodromy matrix entries ingl(2|1)-invariant integrable models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Angular quantization and form-factors in massive integrable models

We discuss an application of the method of the angular quantization to reconstruction of form-factors of local fields in massive integrable models. The general formalism is illustrated with examples of the Klein-Gordon, sinh-Gordon and Bullough-Dodd models. For the latter two models the angular quantization approach makes it possible to obtain free field representations for form-factors of expo...

متن کامل

Invariant Subspaces of the Monodromy

We show that there are obstructions to the existence of certain types of invariant subspaces of the Milnor monodromy; this places restrictions on the cohomology of Milnor fibres of non-isolated hypersurface singularities.

متن کامل

Form Factors for Integrable Lagrangian Field

Using Watson’s and the recursive equations satisfied by matrix elements of local operators in two-dimensional integrable models, we compute the form factors of the elementary field φ(x) and the stress-energy tensor Tμν(x) of Sinh-Gordon theory. Form factors of operators with higher spin or with different asymptotic behaviour can easily be deduced from them. The value of the correlation function...

متن کامل

New reductions of integrable matrix PDEs — Sp ( m ) - invariant systems —

We propose a new type of reduction for integrable systems of coupled matrix PDEs; this reduction equates one matrix variable with the transposition of another multiplied by an anti-symmetric constant matrix. Via this reduction, we obtain a new integrable system of coupled derivative mKdV equations and a new integrable variant of the massive Thirring model, in addition to already known systems. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 2016

ISSN: 0550-3213

DOI: 10.1016/j.nuclphysb.2016.08.025